Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.979
1.
Mol Med ; 30(1): 58, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720283

BACKGROUND: Vascular calcification (VC) is a complication in diabetes mellitus (DM) patients. Osteogenic phenotype switching of vascular smooth muscle cells (VSMCs) plays a critical role in diabetes-related VC. Mitophagy can inhibit phenotype switching in VSMCs. This study aimed to investigate the role of the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin 4 (EX4) in mitophagy-induced phenotype switching. MATERIALS AND METHODS: The status of VC in T2DM mice was monitored using Von Kossa and Alizarin Red S (ARS) staining in mouse aortic tissue. Human aortic smooth muscle cells were cultured in high glucose (HG) and ß-glycerophosphate (ß-GP) conditioned medium. Accumulation of LC3B and p62 was detected in the mitochondrial fraction. The effect of EX4 in vitro and in vivo was investigated by knocking down AMPKα1. RESULTS: In diabetic VC mice, EX4 decreased the percentage of von Kossa/ARS positive area. EX4 inhibited osteogenic differentiation of HG/ß-GP-induced VSMCs. In HG/ß-GP-induced VSMCs, the number of mitophagosomes was increased, whereas the addition of EX4 restored mitochondrial function, increased the number of mitophagosome-lysosome fusions, and reduced p62 in mitochondrial frictions. EX4 increased the phosphorylation of AMPKα (Thr172) and ULK1 (Ser555) in HG/ß-GP-induced VSMCs. After knockdown of AMPKα1, ULK1 could not be activated by EX4. The accumulation of LC3B and p62 could not be reduced after AMPKα1 knockdown. Knockdown of AMPKα1 negated the therapeutic effects of EX4 on VC of diabetic mice. CONCLUSION: EX4 could promote mitophagy by activating the AMPK signaling pathway, attenuate insufficient mitophagy, and thus inhibit the osteogenic phenotype switching of VSMCs.


AMP-Activated Protein Kinases , Exenatide , Glucagon-Like Peptide-1 Receptor , Mitophagy , Signal Transduction , Vascular Calcification , Animals , Mitophagy/drug effects , Vascular Calcification/etiology , Vascular Calcification/metabolism , Vascular Calcification/drug therapy , Signal Transduction/drug effects , Mice , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Male , AMP-Activated Protein Kinases/metabolism , Humans , Exenatide/pharmacology , Exenatide/therapeutic use , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal , Mice, Inbred C57BL
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731941

Micro- and nanoplastic particles, including common forms like polyethylene and polystyrene, have been identified as relevant pollutants, potentially causing health problems in living organisms. The mechanisms at the cellular level largely remain to be elucidated. This study aims to visualize nanoplastics in bronchial smooth muscle (BSMC) and small airway epithelial cells (SAEC), and to assess the impact on mitochondrial metabolism. Healthy and asthmatic human BSMC and SAEC in vitro cultures were stimulated with polystyrene nanoplastics (PS-NPs) of 25 or 50 nm size, for 1 or 24 h. Live cell, label-free imaging by holotomography microscopy and mitochondrial respiration and glycolysis assessment were performed. Furthermore, 25 and 50 nm NPs were shown to penetrate SAEC, along with healthy and diseased BSMC, and they impaired bioenergetics and induce mitochondrial dysfunction compared to cells not treated with NPs, including changes in oxygen consumption rate and extracellular acidification rate. NPs pose a serious threat to human health by penetrating airway tissues and cells, and affecting both oxidative and glycolytic metabolism.


Bronchi , Epithelial Cells , Mitochondria , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Bronchi/metabolism , Bronchi/cytology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Glycolysis/drug effects , Nanoparticles , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Cells, Cultured , Polystyrenes , Asthma/metabolism , Asthma/pathology , Muscle, Smooth/metabolism , Microplastics/toxicity , Oxygen Consumption/drug effects
3.
FASEB J ; 38(9): e23645, 2024 May 15.
Article En | MEDLINE | ID: mdl-38703043

Inflammation assumes a pivotal role in the aortic remodeling of aortic dissection (AD). Asiatic acid (AA), a triterpene compound, is recognized for its strong anti-inflammatory properties. Yet, its effects on ß-aminopropionitrile (BAPN)-triggered AD have not been clearly established. The objective is to determine whether AA attenuates adverse aortic remodeling in BAPN-induced AD and clarify potential molecular mechanisms. In vitro studies, RAW264.7 cells pretreated with AA were challenged with lipopolysaccharide (LPS), and then the vascular smooth muscle cells (VSMCs)-macrophage coculture system was established to explore intercellular interactions. To induce AD, male C57BL/6J mice at three weeks of age were administered BAPN at a dosage of 1 g/kg/d for four weeks. To decipher the mechanism underlying the effects of AA, RNA sequencing analysis was conducted, with subsequent validation of these pathways through cellular experiments. AA exhibited significant suppression of M1 macrophage polarization. In the cell coculture system, AA facilitated the transformation of VSMCs into a contractile phenotype. In the mouse model of AD, AA strikingly prevented the BAPN-induced increases in inflammation cell infiltration and extracellular matrix degradation. Mechanistically, RNA sequencing analysis revealed a substantial upregulation of CX3CL1 expression in BAPN group but downregulation in AA-treated group. Additionally, it was observed that the upregulation of CX3CL1 negated the beneficial impact of AA on the polarization of macrophages and the phenotypic transformation of VSMCs. Crucially, our findings revealed that AA is capable of downregulating CX3CL1 expression, accomplishing this by obstructing the nuclear translocation of NF-κB p65. The findings indicate that AA holds promise as a prospective treatment for adverse aortic remodeling by suppressing the activity of NF-κB p65/CX3CL1 signaling pathway.


Aortic Dissection , Chemokine CX3CL1 , Mice, Inbred C57BL , Pentacyclic Triterpenes , Signal Transduction , Transcription Factor RelA , Vascular Remodeling , Animals , Mice , Male , Aortic Dissection/metabolism , Aortic Dissection/pathology , Aortic Dissection/drug therapy , Pentacyclic Triterpenes/pharmacology , Vascular Remodeling/drug effects , RAW 264.7 Cells , Signal Transduction/drug effects , Transcription Factor RelA/metabolism , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Aminopropionitrile/pharmacology , Macrophages/metabolism , Macrophages/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects
4.
Free Radic Biol Med ; 219: 49-63, 2024 Jul.
Article En | MEDLINE | ID: mdl-38608823

Previous studies have shown that ferroptosis of vascular smooth muscle cells (VSMCs) is involved in the development of aortic dissection (AD) and that histone methylation regulates this process. SP2509 acts as a specific inhibitor of lysine-specific demethylase 1 (LSD1), which governs a variety of biological processes. However, the effect of SP2509 on VSMC ferroptosis and AD remains to be elucidated. This aim of this study was to investigate the role and underlying mechanism of SP2509-mediated histone methylation on VSMC ferroptosis. Here, a mouse model of AD was established, and significantly reduced levels of H3K4me1 and H3K4me2 (target of SP2509) were found in the aortas of AD mice. In VSMCs, SP2509 treatment led to a dose-dependent increase in H3K4me2 levels. Furthermore, we found that SP2509 provided equivalent protection to ferrostatin-1 against VSMC ferroptosis, as evidenced by increased cell viability, decreased cell death and lipid peroxidation. RNA-sequencing analysis and subsequent experiments revealed that SP2509 counteracted cystine deficiency-induced response to inflammation and oxidative stress. More importantly, we demonstrated that SP2509 inhibited the expression of TFR and ferritin to reduce intracellular iron levels, thereby effectively blocking the process of ferroptosis. Therefore, our findings indicate that SP2509 protects VSMCs from multiple stimulus-induced ferroptosis by reducing intracellular iron levels, thereby preventing lipid peroxidation and cell death. These findings suggest that SP2509 may be a promising drug to alleviate AD by reducing iron deposition and VSMC ferroptosis.


Ferroptosis , Iron , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Ferroptosis/drug effects , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Mice , Iron/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Oxidative Stress/drug effects , Humans , Disease Models, Animal , Lipid Peroxidation/drug effects , Phenylenediamines/pharmacology , Male , Cell Survival/drug effects , Histones/metabolism , Histones/genetics , Histone Demethylases/metabolism , Histone Demethylases/genetics , Mice, Inbred C57BL , Cyclohexylamines
5.
Eur J Pharmacol ; 973: 176564, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38614383

Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor ß and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor ß and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor ß after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor ß-STAT3 and PDGF-PDGF receptor ß-NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.


Cell Movement , Cell Proliferation , Macrophages , Myocytes, Smooth Muscle , STAT3 Transcription Factor , Signal Transduction , Triterpenes , Triterpenes/pharmacology , Triterpenes/therapeutic use , Animals , Signal Transduction/drug effects , Humans , STAT3 Transcription Factor/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Rats , Macrophages/drug effects , Macrophages/metabolism , Male , Cell Movement/drug effects , Cell Proliferation/drug effects , Rats, Sprague-Dawley , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Platelet-Derived Growth Factor/metabolism , Cell Survival/drug effects , Monocrotaline , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Becaplermin/pharmacology , Vascular Remodeling/drug effects , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology
6.
Clin Exp Pharmacol Physiol ; 51(6): e13867, 2024 Jun.
Article En | MEDLINE | ID: mdl-38684457

Cardiovascular diseases, particularly those involving arterial stenosis and smooth muscle cell proliferation, pose significant health risks. This study aimed to investigate the therapeutic potential of curcumol in inhibiting platelet-derived growth factor-BB (PDGF-BB)-induced human aortic smooth muscle cell (HASMC) proliferation, migration and autophagy. Using cell viability assays, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays and Western Blot analyses, we observed that curcumol effectively attenuated PDGF-BB-induced HASMC proliferation and migration in a concentration-dependent manner. Furthermore, curcumol mitigated PDGF-BB-induced autophagy, as evidenced by the downregulation of LC3-II/LC3-I ratio and upregulation of P62. In vivo experiments using an arteriosclerosis obliterans model demonstrated that curcumol treatment significantly ameliorated arterial morphology and reduced stenosis. Additionally, curcumol inhibited the activity of the KLF5/COX2 axis, a key pathway in vascular diseases. These findings suggest that curcumol has the potential to serve as a multi-target therapeutic agent for vascular diseases.


Arteriosclerosis , Cell Proliferation , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Sesquiterpenes , Animals , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Humans , Rats , Arteriosclerosis/drug therapy , Arteriosclerosis/pathology , Arteriosclerosis/metabolism , Cell Proliferation/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/cytology , Male , Cell Movement/drug effects , Lower Extremity/blood supply , Autophagy/drug effects , Rats, Sprague-Dawley , Becaplermin/pharmacology
7.
Eur J Pharmacol ; 972: 176547, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38561103

Idiopathic pulmonary fibrosis (IPF) associated to pulmonary hypertension (PH) portends a poor prognosis, characterized by lung parenchyma fibrosis and pulmonary artery remodeling. Serum and parenchyma levels of Interleukin 11 (IL-11) are elevated in IPF-PH patients and contributes to pulmonary artery remodeling and PH. However, the effect of current approved therapies against IPF in pulmonary artery remodeling induced by IL-11 is unknown. The aim of this study is to analyze the effects of nintedanib and pirfenidone on pulmonary artery endothelial and smooth muscle cell remodeling induced by IL-11 in vitro. Our results show that nintedanib (NTD) and pirfenidone (PFD) ameliorates endothelial to mesenchymal transition (EnMT), pulmonary artery smooth muscle cell to myofibroblast-like transformation and pulmonary remodeling in precision lung cut slices. This study provided also evidence of the inhibitory effect of PFD and NTD on IL-11-induced endothelial and muscle cells proliferation and senescence. The inhibitory effect of these drugs on monocyte arrest and angiogenesis was also studied. Finally, we observed that IL-11 induced canonical signal transducer and activator of transcription 3 (STAT3) and non-canonical mitogen-activated protein kinase 1/2 (ERK1/2) phosphorylation, but, PFD and NTD only inhibited ERK1/2 phosphorylation. Therefore, this study provided evidence of the inhibitory effect of NTD and PFD on markers of pulmonary artery remodeling induced by IL-11.


Cell Proliferation , Endothelial Cells , Indoles , Interleukin-11 , Myocytes, Smooth Muscle , Pulmonary Artery , Pyridones , STAT3 Transcription Factor , Pulmonary Artery/drug effects , Pulmonary Artery/cytology , Interleukin-11/metabolism , Indoles/pharmacology , Animals , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , STAT3 Transcription Factor/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Pyridones/pharmacology , Cell Proliferation/drug effects , Rats , Humans , Male , Cellular Senescence/drug effects , MAP Kinase Signaling System/drug effects , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Monocytes/drug effects , Monocytes/metabolism , Vascular Remodeling/drug effects
8.
BMC Cardiovasc Disord ; 24(1): 221, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654161

In this study, we sought to investigate the mechanisms of action of miR-195-5p in the osteogenic differentiation of vascular smooth muscle cells (VSMCs), and thereby provide novel insights and a reference for the targeted therapy of arterial media calcification. VSMC differentiation was induced using sodium ß-glycerophosphate, and we investigated the effects of transfecting cells with miR-195-5p mimics, vectors overexpressing Smad7, and the Wnt/ß-catenin pathway inhibitor (KYA1797K) on VSMC differentiation by determining cell viability and apoptosis, and the mRNA and protein expression of factors associated with osteogenic differentiation and the Wnt/ß-catenin pathway. The results revealed that miR-195-5p mimics enhanced the osteogenic differentiation of VSMCs induced by ß-glycerophosphate, whereas the overexpression of Smad7 reversed this phenomenon. In addition, KYA1797K was found to promote the effects of Smad7 overexpression. In conclusion, by targeting, Smad7, miR-195-5p promotes the Wnt/ß-catenin pathway. and thus the osteogenic differentiation of VSMCs. These findings will provide a reference for elucidating the mechanisms whereby miR-195-5p regulates osteogenic differentiation.


Cell Differentiation , MicroRNAs , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Osteogenesis , Smad7 Protein , Wnt Signaling Pathway , Animals , Apoptosis , beta Catenin/metabolism , beta Catenin/genetics , Cells, Cultured , Gene Expression Regulation , Glycerophosphates/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Osteogenesis/genetics , Smad7 Protein/metabolism , Smad7 Protein/genetics , Rats
9.
Colloids Surf B Biointerfaces ; 238: 113908, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677153

In response to the critical demand for advancements in coronary artery stents, this study addresses the challenges associated with arterial recoil and restenosis post-angioplasty and the imperative to encourage rapid re-endothelialization for minimizing thrombosis risks. We employed an innovative approach inspired by mussel adhesion, incorporating placental anticoagulant protein (AnnexinV) on stent design. The introduction of a post-translationally modified catecholic amino acid L-3,4-dihydroxyphenylalanine (L-Dopa), mimicking mussel characteristics, allowed for effective surface modification of Stainless steel stents through genetic code engineering in AnnexinV (AnxDopa). The efficacy of AnxDopa was analyzed through microscale thermophoresis and flow cytometry, confirming AnxDopa's exceptional binding with phosphatidylserine and activated platelets. AnxDopa coated stainless steel demonstrates remarkable bio-, hemo-, and immuno-compatibility, preventing smooth muscle cell proliferation, platelet adhesion, and fibrin formation. It acts as an interface between the stent and biological fluid, which facilitates the anticoagulation and rapid endothelialization. Surface modification of SS verified through XPS analysis and contact angle measurement attests to the efficacy of AnxDopa mediated surface modification. The hydrophilic nature of the AnxDopa-coated surface enhanced the endothelialization through increased protein absorption. This approach represents a significant stride in developing coronary stents with improved biocompatibility and reduced restenosis risks, offering valuable contributions to scientific and clinical realms alike.


Coated Materials, Biocompatible , Stents , Humans , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Coronary Vessels/drug effects , Platelet Adhesiveness/drug effects , Anticoagulants/pharmacology , Anticoagulants/chemistry , Surface Properties , Cell Proliferation/drug effects , Stainless Steel/chemistry , Blood Platelets/drug effects , Blood Platelets/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Animals , Levodopa/chemistry , Levodopa/pharmacology
10.
Phytomedicine ; 128: 155403, 2024 Jun.
Article En | MEDLINE | ID: mdl-38564920

BACKGROUND: Cardiovascular disease is one of the main causes of global mortality, and there is an urgent need for effective treatment strategies. Gut microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) promotes the development of cardiovascular diseases, and shizukaol C, a natural sesquiterpene isolated from Chloranthus multistachys with various biological activities, might exhibit beneficial role in preventing TMAO-induced vascular inflammation. PURPOSE: The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of shizukaol C on TMAO-induced vascular inflammation. METHODS: The effect and underlying mechanism of shizukaol C on TMAO-induced adhesion molecules expression, bone marrow-derived macrophages (BMDM) adhesion to VSMC were evaluated by western blot, cell adhesion assay, co-immunoprecipitation, immunofluorescence assay, and quantitative Real-Time PCR, respectively. To verify the role of shizukaol C in vivo, TMAO-induced vascular inflammation model were established using guidewire-induced injury on mice carotid artery. Changes in the intima area and the expression of GSTpi, VCAM-1, CD68 were examined using haematoxylin-eosin staining, and immunofluorescence assay. RESULTS: Our data demonstrated that shizukaol C significantly suppressed TMAO-induced adhesion molecule expression and the bone marrow-derived macrophages (BMDM) adhesion in vascular smooth muscle cells (VSMC). Mechanically, shizukaol C inhibited TMAO-induced c-Jun N-terminal kinase (JNK)-nuclear factor-kappa B (NF-κB)/p65 activation, and the JNK inhibition was dependent on the shizukaol C-mediated glutathione-S-transferase pi (GSTpi) expression. By further molecular docking and protein-binding analysis, we demonstrated that shizukaol C directly binds to Keap1 to induce Nrf2 nuclear translocation and upregulated GSTpi expression. Consistently, our in vivo experiment showed that shizukaol C elevated the expression level of GSTpi in carotid arteries and alleviates TMAO-induced vascular inflammation. CONCLUSION: Shizukaol C exerts anti-inflammatory effects in TMAO-treated VSMC by targeting Keap1 and activating Nrf2-GSTpi signaling and resultantly inhibits the downstream JNK-NF-κB/p65 activation and VSMC adhesion, and alleviates TMAO-induced vascular inflammation in vivo, suggesting that shizukaol C may be a potential drug for treating TMAO-induced vascular diseases.


Inflammation , Muscle, Smooth, Vascular , Sesquiterpenes , Animals , Male , Mice , Anti-Inflammatory Agents/pharmacology , Cell Adhesion/drug effects , Inflammation/chemically induced , Inflammation/drug therapy , Kelch-Like ECH-Associated Protein 1/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , Macrophages/drug effects , Macrophages/metabolism , Methylamines/pharmacology , Mice, Inbred C57BL , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , NF-E2-Related Factor 2/drug effects , NF-E2-Related Factor 2/metabolism , Sesquiterpenes/pharmacology , Signal Transduction/drug effects , Glutathione S-Transferase pi/drug effects , Glutathione S-Transferase pi/metabolism
11.
Biomed Pharmacother ; 174: 116505, 2024 May.
Article En | MEDLINE | ID: mdl-38574614

Pulmonary arterial hypertension (PAH) was a devastating disease characterized by artery remodeling, ultimately resulting in right heart failure. The aim of this study was to investigate the effects of canagliflozin (CANA), a sodium-glucose cotransporter 2 inhibitor (SGLT2i) with mild SGLT1 inhibitory effects, on rats with PAH, as well as its direct impact on pulmonary arterial smooth muscle cells (PASMCs). PAH rats were induced by injection of monocrotaline (MCT) (40 mg/kg), followed by four weeks of treatment with CANA (30 mg/kg/day) or saline alone. Pulmonary artery and right ventricular (RV) remodeling and dysfunction in PAH were alleviated with CANA, as assessed by echocardiography. Hemodynamic parameters and structural of pulmonary arteriole, including vascular wall thickness and wall area, were reduced by CANA. RV hypertrophy index, cardiomyocyte hypertrophy, and fibrosis were decreased with CANA treatment. PASMCs proliferation was inhibited by CANA under stimulation by platelet-derived growth factor (PDGF)-BB or hypoxia. Activation of AMP kinase (AMPK) was induced by CANA treatment in cultured PASMCs in a time- and concentration-dependent manner. These effects of CANA were attenuated when treatment with compound C, an AMPK inhibitor. Abundant expression of SGLT1 was observed in PASMCs and pulmonary arteries, while SGLT2 expression was undetectable. SGLT1 increased in response to PDGF-BB or hypoxia stimulation, while PASMCs proliferation was inhibited and beneficial effects of CANA were counteracted by knockdown of SGLT1. Our research demonstrated for the first time that CANA inhibited the proliferation of PASMCs by regulating SGLT1/AMPK signaling and thus exerted an anti-proliferative effect on MCT-induced PAH.


Canagliflozin , Cell Proliferation , Myocytes, Smooth Muscle , Pulmonary Arterial Hypertension , Vascular Remodeling , Animals , Rats , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Canagliflozin/pharmacology , Cell Proliferation/drug effects , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Monocrotaline/adverse effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/pathology , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Sodium-Glucose Transporter 1/drug effects , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Vascular Remodeling/drug effects
12.
Eur J Med Res ; 29(1): 249, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38650027

BACKGROUND: The contractile phenotype of vascular smooth muscle cells (VSMCs) results in good diastolic and contractile capacities, and its altered function is the main pathophysiological basis for diseases such as hypertension. VSMCs exist as a synthetic phenotype in vitro, making it challenging to maintain a contractile phenotype for research. It is widely recognized that the common medium in vitro is significantly less crowded than in the in vivo environment. Additionally, VSMCs have a heightened sense for detecting changes in medium crowding. However, it is unclear whether macromolecular crowding (MMC) helps maintain the VSMCs contractile phenotype. PURPOSE: This study aimed to explore the phenotypic, behavioral and gene expression changes of VSMCs after increasing the crowding degree by adding carrageenan (CR). METHODS: The degree of medium crowding was examined by a dynamic light scattering assay; VSMCs survival and activity were examined by calcein/PI cell activity and toxicity and CCK-8 assays; VSMCs phenotypes and migration were examined by WB and wound healing assays; and gene expression was examined by transcriptomic analysis and RT-qPCR. RESULTS: Notably, 225 µg/mL CR significantly increased the crowding degree of the medium and did not affect cell survival. Simultaneously, CR significantly promoted the contraction phenotypic marker expression in VSMCs, shortened cell length, decreased cell proliferation, and inhibited cell migration. CR significantly altered gene expression in VSMCs. Specifically, 856 genes were upregulated and 1207 genes were downregulated. These alterations primarily affect the cellular ion channel transport, microtubule movement, respiratory metabolism, amino acid transport, and extracellular matrix synthesis. The upregulated genes were primarily involved in the cytoskeleton and contraction processes of VSMCs, whereas the downregulated genes were mainly involved in extracellular matrix synthesis. CONCLUSIONS: The in vitro study showed that VSMCs can maintain the contractile phenotype by sensing changes in the crowding of the culture environment, which can be maintained by adding CR.


Carrageenan , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phenotype , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Carrageenan/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Muscle Contraction/drug effects , Animals , Humans , Cell Survival/drug effects
13.
Redox Biol ; 72: 103144, 2024 Jun.
Article En | MEDLINE | ID: mdl-38613920

Nitric oxide (NO) is a key signalling molecule released by vascular endothelial cells that is essential for vascular health. Low NO bioactivity is associated with cardiovascular diseases, such as hypertension, atherosclerosis, and heart failure and NO donors are a mainstay of drug treatment. However, many NO donors are associated with the development of tolerance and adverse effects, so new formulations for controlled and targeted release of NO would be advantageous. Herein, we describe the design and characterisation of a novel NO delivery system via the reaction of acidified sodium nitrite with thiol groups that had been introduced by cysteamine conjugation to porous graphene oxide nanosheets, thereby generating S-nitrosated nanosheets. An NO electrode, ozone-based chemiluminescence and electron paramagnetic resonance spectroscopy were used to measure NO released from various graphene formulations, which was sustained at >5 × 10-10 mol cm-2 min-1 for at least 3 h, compared with healthy endothelium (cf. 0.5-4 × 10-10 mol cm-2 min-1). Single cell Raman micro-spectroscopy showed that vascular endothelial and smooth muscle cells (SMCs) took up graphene nanostructures, with intracellular NO release detected via a fluorescent NO-specific probe. Functionalised graphene had a dose-dependent effect to promote proliferation in endothelial cells and to inhibit growth in SMCs, which was associated with cGMP release indicating intracellular activation of canonical NO signalling. Chemiluminescence detected negligible production of toxic N-nitrosamines. Our findings demonstrate the utility of porous graphene oxide as a NO delivery vehicle to release physiologically relevant amounts of NO in vitro, thereby highlighting the potential of these formulations as a strategy for the treatment of cardiovascular diseases.


Graphite , Nitric Oxide , Graphite/chemistry , Nitric Oxide/metabolism , Humans , Nanostructures/chemistry , Porosity , Nitric Oxide Donors/chemistry , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/administration & dosage , Cell Proliferation/drug effects , Cardiovascular Diseases/drug therapy , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects
14.
Exp Cell Res ; 438(1): 114031, 2024 May 01.
Article En | MEDLINE | ID: mdl-38616032

Diabetes is closely associated with vascular calcification (VC). Exorbitant glucose concentration activates pro-calcific effects in vascular smooth muscle cells (VSMCs). This study enrolled 159 elderly patients with type 2 diabetes and divided them into three groups, T1, T2 and T3, according to brachial-ankle pulse wave velocity(BaPWV). There were statistically significant differences in the waist circumference, waist hip ratio, systolic blood pressure, 12,13-diHOME (a lipokin) concentration among T1, T2 and T3. 12,13-diHOME levels were positively correlated to high density lipoprotein cholesterol and total cholesterol, but negatively correlated to with waist circumference, waist hip ratio, systolic blood pressure and baPWV. Studies in vitro showed that 12,13-diHOME effectively inhibits calcification in VSMCs under high glucose conditions. Notably, 12,13-diHOME suppressed the up-regulation of carnitine O-palmitoyltransferase 1 (CPT1A) and CPT1A-induced succinylation of HMGB1. The succinylation of HMGB1 at the K90 promoted the protein stability and induced the enrichment of HMGB1 in cytoplasm, which induced the calcification in VSMCs. Together, 12,13-diHOME attenuates high glucose-induced calcification in VSMCs through repressing CPT1A-mediated HMGB1 succinylation.


Carnitine O-Palmitoyltransferase , Glucose , HMGB1 Protein , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Vascular Calcification , Humans , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , HMGB1 Protein/metabolism , Glucose/metabolism , Glucose/pharmacology , Male , Aged , Vascular Calcification/metabolism , Vascular Calcification/pathology , Female , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Cells, Cultured
15.
Eur J Pharmacol ; 973: 176610, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38663541

Aripiprazole, a third-generation antipsychotic, has been widely used to treat schizophrenia. In this study, we evaluated the effect of aripiprazole on voltage-gated potassium (Kv) channels in rabbit coronary arterial smooth muscle cells using the patch clamp technique. Aripiprazole reduced the Kv current in a concentration-dependent manner with a half-maximal inhibitory concentration of 0.89 ± 0.20 µM and a Hill coefficient of 1.30 ± 0.25. The inhibitory effect of aripiprazole on Kv channels was voltage-dependent, and an additional aripiprazole-induced decrease in the Kv current was observed in the voltage range of full channel activation. The decay rate of Kv channel inactivation was accelerated by aripiprazole. Aripiprazole shifted the steady-state activation curve to the right and the inactivation curve to the left. Application of a repetitive train of pulses (1 and 2 Hz) promoted inhibition of the Kv current by aripiprazole. Furthermore, the recovery time constant from inactivation increased in the presence of aripiprazole. Pretreatment of Kv1.5 subtype inhibitor reduced the inhibitory effect of aripiprazole. However, pretreatment with Kv 7 and Kv2.1 subtype inhibitors did not change the degree of aripiprazole-induced inhibition of the Kv current. We conclude that aripiprazole inhibits Kv channels in a concentration-, voltage-, time-, and use (state)-dependent manner by affecting the gating properties of the channels.


Aripiprazole , Coronary Vessels , Myocytes, Smooth Muscle , Potassium Channel Blockers , Potassium Channels, Voltage-Gated , Animals , Aripiprazole/pharmacology , Rabbits , Potassium Channels, Voltage-Gated/metabolism , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Coronary Vessels/drug effects , Coronary Vessels/cytology , Potassium Channel Blockers/pharmacology , Male , Antipsychotic Agents/pharmacology , Dose-Response Relationship, Drug
16.
Biochem Biophys Res Commun ; 712-713: 149961, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38648679

Blood pressure is a crucial physiological parameter and its abnormalities can cause a variety of health problems. We have previously reported that mice with systemic deletion of nardilysin (NRDC), an M16 family metalloprotease, exhibit hypotension. In this study, we aimed to clarify the role of NRDC in vascular smooth muscle cell (VSMC) by generating VSMC-specific Nrdc knockout (VSMC-KO) mice. Our findings reveal that VSMC-KO mice also exhibit hypotension. Aortas isolated from VSMC-KO mice exhibited a weakened contractile response to phenylephrine, accompanied by reduced phosphorylation of myosin light chain 2 and decreased rhoA expression. VSMC isolated from VSMC-KO aortas showed a reduced increase in intracellular Ca2+ concentration induced by α-stimulants. These findings suggest that NRDC in VSMC regulates vascular contraction and blood pressure by modulating Ca2+ dynamics.


Blood Pressure , Calcium , Metalloendopeptidases , Mice, Knockout , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Calcium/metabolism , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Metalloendopeptidases/metabolism , Metalloendopeptidases/genetics , Male , Mice, Inbred C57BL , Hypotension/metabolism , Cells, Cultured , Aorta/metabolism , Aorta/cytology , Vasoconstriction/drug effects , Calcium Signaling
17.
Biomed Pharmacother ; 174: 116552, 2024 May.
Article En | MEDLINE | ID: mdl-38599061

AIMS: Pulmonary hypertension (PH) is characterised by an increase in pulmonary arterial pressure, ultimately leading to right ventricular failure and death. We have previously shown that nerve growth factor (NGF) plays a critical role in PH. Our objectives here were to determine whether NGF controls Connexin-43 (Cx43) expression and function in the pulmonary arterial smooth muscle, and whether this mechanism contributes to NGF-induced pulmonary artery hyperreactivity. METHODS AND RESULTS: NGF activates its TrkA receptor to increase Cx43 expression, phosphorylation, and localization at the plasma membrane in human pulmonary arterial smooth muscle cells, thus leading to enhanced activity of Cx43-dependent GAP junctions as shown by Lucifer Yellow dye assay transfer and fluorescence recovery after photobleaching -FRAP- experiments. Using both in vitro pharmacological and in vivo SiRNA approaches, we demonstrate that NGF-dependent increase in Cx43 expression and activity in the rat pulmonary circulation causes pulmonary artery hyperreactivity. We also show that, in a rat model of PH induced by chronic hypoxia, in vivo blockade of NGF or of its TrkA receptor significantly reduces Cx43 increased pulmonary arterial expression induced by chronic hypoxia and displays preventive effects on pulmonary arterial pressure increase and right heart hypertrophy. CONCLUSIONS: Modulation of Cx43 by NGF in pulmonary arterial smooth muscle cells contributes to NGF-induced alterations of pulmonary artery reactivity. Since NGF and its TrkA receptor play a role in vivo in Cx43 increased expression in PH induced by chronic hypoxia, these NGF/Cx43-dependent mechanisms may therefore play a significant role in human PH pathophysiology.


Connexin 43 , Myocytes, Smooth Muscle , Nerve Growth Factor , Pulmonary Artery , Animals , Humans , Male , Rats , Cells, Cultured , Connexin 43/metabolism , Gap Junctions/metabolism , Gap Junctions/drug effects , Hypertension, Pulmonary/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Nerve Growth Factor/metabolism , Phosphorylation , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats, Sprague-Dawley , Rats, Wistar , Receptor, trkA/metabolism
18.
J Sex Med ; 21(5): 379-390, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38451321

BACKGROUND: The cavernous nerve (CN) is frequently damaged in prostatectomy and diabetic patients with erectile dysfunction (ED), initiating changes in penile morphology including an acute and intense phase of apoptosis in penile smooth muscle and increased collagen, which alter penile architecture and make corpora cavernosa smooth muscle less able to relax in response to neurotransmitters, resulting in ED. AIM: Sonic hedgehog (SHH) is a critical regulator of penile smooth muscle, and SHH treatment suppresses penile remodeling after CN injury through an unknown mechanism; we examine if part of the mechanism of how SHH preserves smooth muscle after CN injury involves bone morphogenetic protein 4 (BMP4) and gremlin1 (GREM1). METHODS: Primary cultures of smooth muscle cells were established from prostatectomy, diabetic, hypertension and Peyronie's (control) (N = 18) patients. Cultures were characterized by ACTA2, CD31, P4HB, and nNOS immunohistochemical analysis. Patient smooth muscle cell growth was quantified in response to BMP4 and GREM1 treatment. Adult Sprague Dawley rats underwent 1 of 3 surgeries: (1) uninjured or CN-injured rats were treated with BMP4, GREM1, or mouse serum albumin (control) proteins via Affi-Gel beads (N = 16) or peptide amphiphile (PA) (N = 26) for 3 and 14 days, and trichrome stain was performed; (2) rats underwent sham (N = 3), CN injury (N = 9), or CN injury and SHH PA treatment for 1, 2, and 4 days (N = 9). OUTCOMES: Western analysis for BMP4 and GREM1 was performed; (3) rats were treated with 5E1 SHH inhibitor (N = 6) or IgG (control; N = 6) for 2 and 4 days, and BMP4 and GREM1 localization was examined. Statistics were performed by analysis of variance with Scheffé's post hoc test. RESULTS: BMP4 increased patient smooth muscle cell growth, and GREM1 decreased growth. In rats, BMP4 treatment via Affi-Gel beads and PA increased smooth muscle at 3 and 14 days of treatment. GREM1 treatment caused increased collagen and smooth muscle at 3 days, which switched to primarily collagen at 14 days. CN injury increased BMP4 and GREM1, while SHH PA altered Western band size, suggesting alternative cleavage and range of BMP4 and GREM1 signaling. SHH inhibition in rats increased BMP4 and GREM1 in fibroblasts. CLINICAL IMPLICATIONS: Understanding how SHH PA preserves and regenerates penile morphology after CN injury will aid development of ED therapies. STRENGTHS AND LIMITATIONS: SHH treatment alters BMP4 and GREM1 localization and range of signaling, which can affect penile morphology. CONCLUSION: Part of the mechanism of how SHH regulates corpora cavernosa smooth muscle involves BMP4 and GREM1.


Bone Morphogenetic Protein 4 , Hedgehog Proteins , Intercellular Signaling Peptides and Proteins , Penis , Animals , Humans , Male , Middle Aged , Rats , Bone Morphogenetic Protein 4/metabolism , Cells, Cultured , Cytokines , Erectile Dysfunction/etiology , Hedgehog Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Muscle, Smooth/drug effects , Myocytes, Smooth Muscle/drug effects , Penile Induration/pathology , Prostatectomy , Rats, Sprague-Dawley
19.
Aging (Albany NY) ; 16(8): 6745-6756, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38546402

Ginsenoside Rb1 is the major active constituent of ginseng, which is widely used in traditional Chinese medicine for the atherosclerosis treatment by anti-inflammatory, anti-oxidant and reducing lipid accumulation. We explored cellular target and molecular mechanisms of ginsenoside Rb1 based on network pharmacology and in vitro experimental validation. In this study, we predicted 17 potential therapeutic targets for ginsenoside Rb1 with atherosclerosis from public databases. We then used protein-protein interaction network to screen the hub targets. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment showed that the effects of ginsenoside Rb1 were meditated through multiple targets and pathways. Next, molecular docking results revealed that in the 10 core targets, CCND1 has the highest binding energy with ginsenoside Rb1. Vascular cell proliferation plays a critical role in atherosclerosis development. However, the effect and direct target of ginsenoside Rb1 in regulating vascular cell proliferation in atherosclerosis remains unclear. Edu straining results indicated that ginsenoside Rb1 inhibited the cell proliferation of endothelial cells, macrophages, and vascular smooth muscle cells. The protein immunoprecipitation (IP) analysis showed that ginsenoside Rb1 inhibited the vascular cell proliferation by suppressing the interaction of CCDN1 and CDK4. These findings systematically reveal that the anti-atherosclerosis mechanism of ginsenoside Rb1 by integrating network pharmacology and experimental validation, which provide evidence to treat atherosclerosis by using ginsenoside Rb1 and targeting CCND1.


Atherosclerosis , Cell Proliferation , Ginsenosides , Molecular Docking Simulation , Protein Interaction Maps , Ginsenosides/pharmacology , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Cell Proliferation/drug effects , Humans , Network Pharmacology , Animals , Cyclin D1/metabolism , Cyclin D1/genetics , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Mice , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/genetics
20.
Phytomedicine ; 128: 155341, 2024 Jun.
Article En | MEDLINE | ID: mdl-38518636

BACKGROUND: Atherosclerosis (AS) is a chronic disease characterized by lipid accumulation in the aortic wall and the formation of foam cells overloaded with large lipids inclusions. Currently, Western medicine is primarily used to improve lipid metabolism disorders and reduce inflammatory reactions to delay AS progression, but these medicines come with serious side effects and drug resistance. Gualou-Xiebai (GLXB) is a renowned herb pair that has been proven effective against AS. However, the potential molecular mechanism through which GLXB exerts the anti-atherosclerotic effects of increasing lipophagy in vascular smooth muscle cells (VSMCs) remains unknown. PURPOSE: This study aims to explore the role of lipophagy and the therapeutic mechanism of GLXB in AS. METHODS: UPLC-Q-TOF-MS for the determination of the main components of GLXB-containing serum. An AS mouse model was established by feeding a high-fat diet (HFD) to ApoE-/- mice for 12 weeks. Ultrasonography monitoring was used to confirm the successful establishment of the AS model. Plaque areas and lipid deposition were evaluated using HE staining and aorta imagingafter GLXB treatment. Immunofluorescence staining and Western blotting were utilized to observe the P2RY12 and lipophagy levels in AS mice. VSMCs were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce foam cell formation. The degree of lipophagy and the related molecular mechanisms were assessed after treating the VSMCs with GLXB-containing serum or si-P2RY12 transfection. The active components of GLXB-containing serum that act on P2RY12 were screened and verified by molecular docking and dual-luciferase reporter assays. RESULTS: Seventeen components of GLXB were identified in rat serum by UPLC-Q-TOF-MS. GLXB significantly reduced lipid deposition in HFD-fed ApoE-/- mice and ox-LDL-induced VSMCs. GLXB strikingly increased lipophagy levels by downregulating P2RY12, p62, and plin2, upregulating LC3Ⅱ protein expression, and increasing the number of autophagosomes. Notably, the lipophagy inhibitor CQ and the P2RY12 receptor agonist ADPß abolished the GLXB-induced increase in lipophagy. Last, we confirmed that albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin from GLXB significantly inhibited P2RY12. CONCLUSION: GLXB activates lipophagy and inhibits lipid accumulation-associated VSMC-derived foam cell formation through suppressing P2RY12 activation, resulting in anti-atherosclerotic effects. The GLXB components albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin are the potential active effectors against P2RY12.


Atherosclerosis , Drugs, Chinese Herbal , Foam Cells , Muscle, Smooth, Vascular , Receptors, Purinergic P2Y12 , Animals , Atherosclerosis/drug therapy , Foam Cells/drug effects , Foam Cells/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Male , Mice , Drugs, Chinese Herbal/pharmacology , Receptors, Purinergic P2Y12/metabolism , Diet, High-Fat , Mice, Inbred C57BL , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Rats , Disease Models, Animal , Autophagy/drug effects , Rats, Sprague-Dawley , Lipid Metabolism/drug effects , Aorta/drug effects , Lipoproteins, LDL/metabolism
...